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SUMMARY

This paper reports a comparative study on the stability limits of nine finite difference schemes to
discretize the one-dimensional unsteady convection–diffusion equation. The tested schemes are: (i)
fourth-order compact; (ii) fifth-order upwind; (iii) fourth-order central differences; (iv) third-order
upwind; (v) second-order central differences; and (vi) first-order upwind. These schemes were used
together with Runge–Kutta temporal discretizations up to order six. The remaining schemes are the (vii)
Adams–Bashforth central differences, (viii) the Quickest and (ix) the Leapfrog central differences. In
addition, the dispersive and dissipative characteristics of the schemes were compared with the exact
solution for the pure advection equation, or simple first or second derivatives, and numerical experiments
confirm the Fourier analysis. The results show that fourth-order Runge–Kutta, together with central
schemes, show good conditional stability limits and good dispersive and dissipative spectral resolution.
Overall the fourth-order compact is the recommended scheme. Copyright © 2001 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Simulation of unsteady incompressible fluid flow phenomena is receiving increasing interest,
either in the investigation of turbulent flow structure [direct numerical simulation (DNS) and
large eddy simulation (LES)] or in the framework of engineering applications. Finite difference
schemes have been used extensively in the simulations of those flows. Usually the criteria that
set the maximum time step for explicit methods are the same criteria for time accuracy. That
is, the time step is selected in order to resolve the characteristic time scales of interest, which
very often favours the use of explicit schemes over the unconditionally stable implicit methods.
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For stable simulations of fluid flow by explicit finite difference schemes, the time step must
be smaller than a critical time step. Since the pioneering work of Courant, Friedrichs and Levy
(CFL; see Lax [1] for a historical perspective) the techniques for evaluating this time step are
described in many textbooks, e.g. Roache [2] and Thomas [3]. Among them the Fourier
method proposed by von Neumann or the matrix method, if boundary conditions should be
also taken into account, are very popular and many studies have been reported investigating
the stability limits of explicit finite difference analogues of the convection–diffusion equation,
see, e.g. Rigal [4,5], Leonard [6], Clancy [7], Noye [8], Richardson and Ferrel [9] and Morton
[10]. Theoretical studies involving generalization to multi-dimensional problems may be found
in Hindmarsh et al. [11] and Rigal [12]. Other particular properties, such as conservation
properties, non-linear instabilities, dissipation and dispersion, may be found in References
[13–16] to mention but a few classical works.

The main objective of this paper is to report a comparative study of the stability limits of
different convection discretization schemes in the framework of Runge–Kutta temporal
discretization. We focus on the stability region for the one-dimensional unsteady convection–
diffusion equation and dispersion and dissipation properties. The convection discretization
schemes to be evaluated under Runge–Kutta of first-, second, fourth- and sixth-order are (i)
fourth-order compact, see Lele [17]; (ii) fourth-order central differences; (iii) second-order
central differences; (iv) fifth-order upwind, see Rai and Moin [18]; (v) third-order upwind; (vi)
first-order upwind; and, in addition, the second-order accurate temporal discretization
schemes: the (vii) Adams–Bashforth central differences; (viii) Leapfrog Duffort–Frankel; and
(ix) Quickest [19]. Thus, several results in this work, in particular stability analysis of the
one-dimensional transport equation are not new. However, the detailed comparison will
provide complementary information for those interested in applications of Runge–Kutta
multi-stage temporal discretization for practical fluid flow problems. Moreover, two families of
discretization procedures involving symmetrical and unsymmetrical stencils for convection
discretization are compared, including the high-order compact. The diffusion terms were
always evaluated with symmetric finite difference stencils.

The results are presented mainly in a geometrical format for clarity and evaluated using
MATHEMATICA to avoid algebraic errors. In addition, this tool allows us to easily
manipulate complex expressions required to present the stability diagrams.

The different schemes for spatial and temporal discretization are presented in the next
section. Section 3 presents the stability diagrams for the schemes tested and a spectral analysis
of dispersion and dissipation errors. This is followed in Section 4 by numerical experiments
with a periodic exponential-like function that demonstrates the conducted Fourier analysis.
The paper ends with summary conclusions.

2. BRIEF DESCRIPTION OF THE NUMERICAL SCHEMES

In this section we will briefly outline the numerical discretization schemes under consideration.
The general differential equation to be studied is the convection–diffusion equation
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were � is the scalar property to be transported, a is the field velocity and � is the diffusive
coefficient. f�(x) is a force term that balances the external forces and, without the lack of
generalization will not be considered in the following. In the next sections the discretization of
the first and second derivatives of Equation (2.1) is presented for each scheme used.

2.1. Spatial discretization

2.1.1. First deri�ati�e. The general expression for the discrete approximation of the first
derivative is
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where �i are coefficients to be defined and �x, set to a constant, is the grid spacing.
Controlling the m and n integer values and the �i we can construct a lot of schemes with some
formal truncation error order and/or some specific properties. For the non-symmetric schemes
we suppose that a is positive, and so an upwind scheme will be characterized by n�m.

In the case of compact methods, an implicit relationship enforces the discrete value to
depend on both the field variable and its own derivative
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2.1.1.1. First-order upwind (Up1).

n=1, m=0

�i−1= −1, �i=1

�=
1
2

(�x)1

� being the truncation error.
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2.1.1.2. Third-order upwind (Up3).
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2.1.1.3. Fifth-order upwind (Up5).
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2.1.1.4. Second-order central (Cd2).
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2.1.1.5. Fourth-order central (Cd4).
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2.1.1.6. Fourth-order central compact (CdC4).
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2.1.2. Second deri�ati�e. The general expression for the discrete approximation of the second
derivative is
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where �i are coefficients to be defined and �x, set to a constant, is the grid spacing.
Controlling the m and n integer values and the �i we can construct a lot of schemes with some
formal truncation error order and/or some specific properties.

In the case of compact methods, an implicit relationship enforces the discrete value to
depend on both the field variable and its own derivative
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2.1.2.1. Second-order central (Cd2).
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2.1.2.2. Fourth-order central (Cd4).
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2.1.2.3. Fourth-order central compact (CdC4).
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2.2. Temporal discretization

The temporal discretization was performed by the standard Runge–Kutta schemes as well as
by the well-known second-order Adams–Bashforth and Leapfrog and the third-order
Quickest.

2.2.1. Runge–Kutta p-order (RKp). The standard up p-order Runge–Kutta schemes are
defined as

RK(p ; z)= �
p

i=0

z i

i !
(2.6)

where z is an operator related to the spatial discretization. Each Runge–Kutta temporal
discretization scheme can be written as

�n+1=RK(p ; �tf )�n (2.7)

where �t is the time step and f is the spatial operator.
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2.2.2. Adams–Bashforth second-order (AB2).
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2.2.3. Leapfrog second-order (LF).

�n+1=�n−1+2�tf(�n) (2.9)

2.2.4. Quickest third-order (Q). The Quickest scheme may be presented as
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where c=a�t/�x is the CFL number, commonly designated the Courant number and
�=��t/�x2 is the diffusive parameter.

Additional information related to this scheme may be found in Leonard [19], Durst et al.
[20] or Pereira and Sousa [21].

3. FOURIER ANALYSIS

In this section we present the Fourier analysis of the schemes taking into account the stability
limit by the von Neumann method and the spectral resolution as a function of the
wavenumber.

3.1. Fourier analysis method

The Fourier analysis used here, see, e.g. Vichnevetsky and Bowles [22] and Hirsch [23],
basically consists of applying a local Fourier series to the discretized equation by replacing
each local � by a corresponding Fourier mode
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� i+q
n+p=�p eIq��x=�p eIq� (3.1)

where �p is the amplitude at the pth time level, I is the imaginary number �−1 and � is the
cell wavenumber. Because of the linear behaviour of the Fourier series, a simple Fourier mode,
which is a priori generic, is enough to be considered.

After proper algebraic manipulations, one obtains an expression for � or a polynomial of it.
With the above notation the complex � represents the amplification factor which measures
how the several Fourier modes in the field change with the time step as a function of Courant
and the diffusive parameter. The condition ����1 for all wavenumbers �, �� [0; �] is the
guarantee of stability while its modulus and argument represents the evolution in amplitude
and phase respectively.

3.2. Comparison of stability limits of different schemes

The stability limits of the Runge–Kutta temporal discretization (first-, second-, fourth- and
sixth-order) combined with different schemes for convection and diffusion are shown Figure
1(a)– (f). The figures correspond to Up1Cd2, Up3Cd2, Up5Cd4, Cd2Cd2, Cd4Cd4 and
CdC4CdC4 respectively (the first letters in the notation refer to the convective scheme). Each
figure shows the stability limits as a function of Courant c=a�t/�x and diffusive parameter
�=��t/�x2 for different Runge–Kutta temporal discretization schemes ranging from first-or-
der to sixth-order of accuracy. As expected, the stability limit increases with the increase of
Runge–Kutta stages. Convection discretization performed with upwind schemes show a
similar trend characterized by a linearly decrease of Courant parameter, with an increase of the
diffusive parameter up to a critical value. This behaviour is independent of the level of
accuracy of the upwind scheme. However, the convection discretization schemes that use a
symmetric stencil (central differences of compact central differences) show an opposite trend
characterized by a maximum diffusive limit that occurs at a Courant number greater than zero.
Also, the central differences show that the RK4 is stable for pure convection. The RK3, that
is not shown, also displays a stable region for infinite Péclet number but the maximum
Courant is approximately 0.6 of the displayed RK4 value.

Very often fluid flow calculations close to boundaries display a stability limit due to large
diffusive parameters and low Courant numbers, which slightly favour upwind schemes.
Fortunately, the use of non-symmetric stencils close to boundaries also displays a slightly
larger stability limit in comparison with symmetric stencils. For a wide range of high Reynolds
flows, the Courant numbers are larger far from boundaries than close to walls and the
diffusive parameters follow an opposite trend. The RK4 displays the larger stability limit in
terms of Courant parameter for low (�0.05) diffusive parameters and symmetric stencils. For
upwind schemes, for convection the RK4 displays a Courant�1.7 at diffusive parameter equal
to zero. The results displayed in Figure 1(a)– (f) add to the many published stability diagrams
since Roache [2] for upwind or central schemes using first-order Euler temporal discretization.
The same is true for the compact schemes after Lele [17].

Figure 1(g) shows the stability limits for the Leapfrog, Adams–Bashforth and Quickest
schemes. The second-order Adams–Bashforth and the Leapforg temporal discretization
schemes are used with central differences spatial discretization as is usual in the literature and
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Figure 1. Stability limit for several temporal and spatial discretization schemes: (a) Runge–Kutta with
Up1Cd2; (b) Runge–Kutta with Up3Cd2; (c) Runge–Kutta with Up5Cd4; (d) Runge–Kutta with Cd2cd2;
(e) Runge–Kutta with Cd4Cd4; (f) Runge–Kutta with CdC4CdC4; (g) Stability limit for Q, LF and AB2.
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Figure 1 (Continued)
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Figure 1 (Continued)

applications. The Adams–Bashforth scheme is unconditionally unstable for pure convection or
for diffusive parameters greater than �0.25, see e.g. Ferziger [24]. For the convection–diffusion
equation, it displays the maximum stability limit at a diffusive parameter approximately at 0.17,
corresponding to a Courant number of about 0.8. The Leapfrog scheme, with the Duffort–
Frankel as diffusive scheme, displays a stability limit corresponding to a Courant number �1
independently of the diffusive parameter, see e.g. Thomas [3]. The Quickest shows a stability
diagram characterized by a high Courant number in the vicinity of a low diffusion parameter
and afterwards a stability region in between two Courant numbers, see e.g. Leonard [6].

A comparison of the stability limits of all the tested schemes under RK1, RK2, RK4 or RK6
discretization is shown in Figure 2(a)– (d) respectively. If one does not consider the scheme’s
accuracy and only looks at the stability range for problems dictated with large diffusive
parameter, the central differences are the best choice. Obviously they are especially appropriate
for diffusion-dominated problems. If very high Péclet numbers (or very low diffusive parameters)
are the main constraints of the problem, there is a clear option to use RK4 and symmetric stencils
say compact high-order scheme.

Figure 3 shows the stability domain for several standard Runge–Kutta schemes plotted in
the complex plane. The results show that for RK1 and RK2 the stability region of these methods
is tangent to the imaginary axis by the left. For RK4 an improved stability is obtained when
compared with the sixth-order method.

3.3. Spectral error analysis

In this section the dispersive and dissipative errors of each scheme are evaluated against the exact
solution of a one-dimensional advection equation

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 417–439
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Figure 2. Stability for several spatial discretization schemes with: (a) RK1; (b) RK2; (c) RK4; (d) RK6.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 417–439



FOURIER ANALYSIS OF SEVERAL FINITE DIFFERENCE SCHEMES 429

Figure 2 (Continued)
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Using the exact solution

�(x, t)=� eIwt eI�x (3.3)

the above advection equation is exactly satisfied for w= −a�, where w is the wave frequency
and � is the wavenumber. So, the exponent of the first exponential term is imaginary and no
dissipation exists. That is, the exact amplification factor is set equal to 1 and the exact

Figure 3. Stability domain for several standard RK schemes.
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phase is −c� (c being the Courant number) and �=��x, the frequency in terms of the several
Fourier modes.

In addition to the knowledge of the finite difference scheme stability limit, one wishes to
know the scheme characteristics with respect to dispersion and dissipation behaviour, see, e.g.
Vichnevetsky and Bowles [22]. As is well known, the dispersion and dissipation of the scheme
should be equal to those of the differential equation under consideration. This objective is also
known not to be achieved, because the fluid flow equation(s) do not have general analytical
solutions. Consequently, the scheme should have a good spectral resolution under simplified
fluid flow models as a prerequisite to giving reliable solutions of the Navier–Stokes equations
under practical meshes. In the case of meshes with a sufficient number of points per wave, it
is well known that the spectral resolution of the scheme is proportional to its truncation error.

For steady fluid flow problems the schemes should follow the dispersive and dissipative
behaviour of a first and second spatial derivatives. For this propose, Figure 4(a) and (b) show
the spectral resolution for the first derivative using the procedure outlined by Lele [17] and
Figure 4(c) and (d) display the results concerning the second derivative. The compact scheme
shows the best spectral resolution for both derivatives.

Figure 5(a)– (c) shows the dissipative (or amplitude) error as a function of frequency (or
wavenumber) for all the schemes under consideration, except for Adams–Bashforth, and for
Courant numbers of 0.1, 0.5 and 1.0 respectively. The figures show that non-symmetric
stencils, such as the first-, third- and fifth-order upwind schemes, may yield large amplitude
errors and symmetric schemes (compact schemes and central difference, including Leapfrog)
that do not display real parts in their spectrum show no dissipative errors, or at least very low
ones. The analysis of Figure 5(a)– (c) also shows that by increasing the Courant number, the
upwind schemes display increasing errors at higher frequencies. The analysis of the present
problem revealed two special cases which are worth mentioning. The compact RK4 scheme
displays at a Courant number of 1 a dissipative behaviour in between �/2 and 3�/4 due to the
evolution of the RK4 stability domain (Figure 3). The imaginary axis lies inside the stability
domain while the central Runge–Kutta schemes display a stability limit that is tangent to the
imaginary axis (Figure 3). The other special case is related to Quickest behaviour. The
Quickest scheme shows increasing dissipative errors up to a Courant number equal to 0.5.
Afterwards the scheme displays a decreasing amplitude error with wavenumber up to its
stability limit of Courant number equal to 1. At this Courant number value the scheme does
not show dissipation error. Another particular case is relative to the two solutions of the
amplification factor of the Leapfrog scheme, which display zero dissipation error.

Figure 6(a)– (c) shows the dispersive error as a function of frequency for the tested schemes
and for Courant numbers equal to 0.1, 0.5 and 1.0 respectively. The general trend is that all
the schemes show dispersive (or phase) errors at high frequencies. The dispersive error
increases with the Courant number with the exception of the particular behaviour of the
Quickest scheme.

The dispersive error evolution of Runge–Kutta upwind p-order (p odd) is virtually equal to
Runge–Kutta central schemes (p+1) order, up to a Courant number equal to 0.5. The
Quickest scheme also displays for the phase error a complex behaviour in the sense that
dispersion errors are present with the exception of Courant numbers equal to 0.5 and 1.0. For
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Figure 4. Spectral resolution for the (a) first derivative dispersion, (b) first derivative dissipation, (c)
second derivative dispersion, (d) second derivative dissipation.
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Figure 5. Dissipative error for several convective schemes: Courant=0.1 (a); =0.5 (b); =1.0 (c).
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Figure 5 (Continued)

a Courant number equal to 1, Quickest displays the behaviour of a Lagrangian approximation,
which is exact for the present one-dimensional problem and this is due to the inherent
Leith-type of temporal approximation. Overall, the RK4 compact scheme shows the best
resolution both in phase or in amplitude.

The Leapfrog scheme displays two solutions for the amplification factor, see e.g. Thomas [3].
One of them, not shown, displays very high dispersive errors for all frequency range but it is
likely not present in the solution if the grid is not too coarse. The other solution shown in
Figures 5 and 6 displays a dispersive error similar to central differences.

4. NUMERICAL EXPERIMENTS

Numerical experiments can be made either related to the stability diagrams or related to
dissipation and dispersion errors. Numerical experiments to confirm the stability region have
to be made with care because the von Neumann analysis does not take into consideration the
boundary conditions. We have performed some tests to confirm the stable and unstable regions
shown in Figures 1 and 2. However, they are not included in the figures for clarity.

Numerical experiments to confirm the dissipative or dispersive characteristics of the schemes
for one-dimensional convection equation are presented in Figure 7, after two revolution
periods of a C� exponential-like function
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-

Figure 6. Dispersive error for several convective schemes: Courant=0.1 (a); =0.5 (b); =1.0 (c).
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Figure 6 (Continued)
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All results with the exception of Quickest are obtained with RK4 and the Courant number set
equal to 0.5. A mesh with only 50 nodes was used to highlight the schemes solution differences.

Figure 7 shows the strong dissipation damping induced by the first-order accurate upwind
scheme. The dissipation error decreases for third- and fifth-order upwind respectively. The
compact scheme shows negligible dissipation (in fact there is no dissipation). These results
agree very well with Figure 5(b). However, the results corresponding to RK4 and central
differences (second- and fourth-order) suggest a dissipation error but their origin is related
with an erroneous negative group velocity (V).

Sinusoidal wave solutions interacting with the regular discretization of the domain of the
equation produce a frequency dependent velocity. The theory of group velocity is important to
explain the propagation of short wavelength spurious oscillations, which appear near disconti-
nuities in discrete approximations of hyperbolic equations. Figure 8 shows the group velocity
as a function of the wavenumber computed according to

V=
d

dk
(kâ)
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Figure 7. Numerical experiments with several convective schemes.
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where k denotes the wavenumber and â the phase speed. The exact solution for a unit
phase speed is V=1.0. Figure 8 shows that the group velocity deviates from unity with the
increase in wavenumber. All the schemes display a region with negative group velocity for
high wavenumbers while for low wavenumbers the deviation is inversely proportional to the
scheme order of accuracy. The fourth-order compact scheme up to approximately 3

4� dis-
plays the best results, while the first- and third-order upwind schemes dissipate the spurious
oscillations. The second- and fourth-order central schemes do not dissipate and the envel-
ope of such spurious oscillations is observed to propagate at the group velocity rather than
at the phase velocity. The second- and fourth-order central schemes display a non-negligible
group velocity different from unity for very low wavenumbers. Consequently, the computa-
tional domain periodicity amplifies the differences between the phase and group velocities
almost for all wavenumbers.

For the Quickest scheme, it shows an increasing dissipative error up to a Courant
number equal to 0.5. Afterwards the scheme displays a decreasing amplitude error with
wavenumber up to its stability limit of a Courant number equal to 1. Dispersion is seen to
be zero at a Courant number equal to 0.5. Below this value, the common phase delay can
be observed. For higher Courant number, in the case of 0.7, the phase velocity is greater
than the correct one.

Figure 8. Group velocity for several convective schemes.
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5. CONCLUSIONS

A Fourier analysis of different Runge–Kutta of first-, second-, fourth- and sixth-order was
performed aiming to study the stability limits and phase and amplitude errors of different
convection–diffusion discretization schemes applied to a one-dimensional transport equa-
tion. The global analysis showed that the standard RK4 displays a good stability region
enhancing the stability limits of central difference schemes for convection discretization.
Afterwards, a Fourier analysis of nine different schemes, including six RK4 schemes (com-
pact fourth-order, central differences second- and fourth-order and upwind first-, third- and
fifth-order) and two second-order accurate (Leapfrog and Adams–Bashforth) and the third-
order Quickest was performed aiming to access their stability limit. In addition, the ampli-
tude and phase errors were evaluated against the exact solution of a linear one-dimensional
wave equation.

The main conclusions of the work can be summarized as follows:

(i) Among the standard Runge–Kutta schemes, the RK4 showed a good stability region
and a better one compared with the RK6 if central differences are used in spatial
discretization.

(ii) The first-order upwind scheme should not be used for any calculation of unsteady
flows, even with RK4 temporal discretization.

(iii) Upwind schemes (third- and fifth-order) should be used with very low Courant num-
bers, otherwise dissipative errors may corrupt the solutions at high wavenumber
(coarse grids).

(iv) The classical Adams–Bashforth and Leapfrog schemes are very good when second-
order accuracy is only required.

(v) The Quickest (quadratic Leith-type of temporal discretization and third-order upstream
spatial discretization) should be used together with very low Courant numbers other-
wise too large dissipation errors are present.

(vi) Overall, the fourth-order compact/RK4 shows the best spectral resolution.
(vii) The reported stability diagram may be useful to the reader to establish the stability

limit for one of the schemes as a prerequisite for general application if other relevant
information concerning non-linear instability or stability in multidimensional space are
not available for the selected method.
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